# find all possible roots of the polynomial where x∈c:?

a) 2x^3+5x^2+14x+6=0

b) 8x^4=x

c) x^2(4x^2+17)=15

### 1 Answer

- micatkieLv 64 weeks agoFavourite answer
a)

Let f(x) = 2x³ + 5x² + 14x + 6

f(-1/2) = 0

Then, (2x + 1) is a factor of 2x³ + 5x² + 14x + 6.

2x³ + 5x² + 14x + 6 =0

(2x³ + x²) + (4x² + 2x) + (12x + 6) = 0

x²(2x + 1) + 2x(2x + 1) + 6(2x + 1) = 0

(2x + 1)(x² + 2x + 6) = 0

2x + 1 = 0 or x² + 2x + 6 = 0

x = -1/2

(x² + 2x + 6 = 0 has no real roots because discriminant = -20 < 0)

====

b)

8x⁴ = x

8x⁴ - x = 0

x(8x³ - 1) = 0

x[(2x)³ - 1³] = 0

x(2x - 1)(4x² + 2x + 1) = 0

x = 0 or 2x - 1 = 0 or 4x² + 2x + 1 = 0

x = 0 or x = 1/2

(4x² + 2x + 1 = 0 has no real roots because discriminant = -12 < 0)

====

c)

x²(4x² + 17) = 15

4x⁴ + 17x² - 15 = 0

(4x² - 3)(x² + 5) = 0

(2x + √3)(2x - √3)(x² + 5) = 0

2x + √3 = 0 or 2x - √3 = 0 or x² + 5 = 0

x = -(√3)/2 or x = (√3)/2

(x² + 5 = 0 has no real roots.)