calculus ?
Find the distance traveled by a particle with position (x, y) as t varies in the given time interval.
x = cos^2(t), y = cos(t), 0 ≤ t ≤ 3𝜋
I know i have to use the formula
sqrt((dx/dt)^2+(dy/dt)^2)
2 Answers
- 2 months ago
x = cos(t)^2
dx/dt = 2 * cos(t) * (-sin(t)) = -2sin(t)cos(t)
y = cos(t)
dy/dt = -sin(t)
sqrt((dx/dt)^2 + (dy/dt)^2) * dt =>
sqrt(4 * sin(t)^2 * cos(t)^2 + sin(t)^2) * dt =>
sqrt(sin(t)^2 * (4cos(t)^2 + 1)) * dt =>
sin(t) * sqrt(4 * cos(t)^2 + 1) * dt
u = cos(t)
du = -sin(t) * dt
sqrt(4u^2 + 1) * (-du) =>
-sqrt(1 + 4u^2) * du
tan(m) = 2u
sec(m)^2 * dm = 2 * du
-sqrt(1 + tan(m)^2) * (1/2) * sec(m)^2 * dm =>
(-1/2) * sqrt(sec(m)^2) * sec(m)^2 * dm =>
(-1/2) * sec(m) * sec(m)^2 * dm
int(sec(m)^3 * dm)
a = sec(m)
da = sec(m) * tan(m) * dm
db = sec(m)^2 * dm
b = tan(m)
int(sec(m)^3 * dm) = sec(m) * tan(m) - int(sec(m) * tan(m)^2 * dm)
int(sec(m)^3 * dm) = sec(m) * tan(m) - int(sec(m) * (sec(m)^2 - 1) * dm)
int(sec(m)^3 * dm) = sec(m) * tan(m) - int(sec(m)^3 * dm) + int(sec(m) * dm)
2 * int(sec(m)^3 * dm) = sec(m) * tan(m) + int(sec(m) * dm)
2 * int(sec(m)^3 * dm) = sec(m) * tan(m) + ln|sec(m) + tan(m)|
int(sec(m)^3 * dm) = (1/2) * (sec(m) * tan(m) + ln|sec(m) + tan(m)|)
(-1/4) * (sec(m) * tan(m) + ln|sec(m) + tan(m)|) =>
(-1/4) * (2u * sqrt(1 + 4u^2) + ln|2u + sqrt(1 + 4u^2)|) =>
(-1/4) * (2 * cos(t) * sqrt(1 + 4 * cos(t)^2) + ln|2 * cos(t) + sqrt(1 + 4 * cos(t)^2)|)
From t = 0 to t = 3pi
cos(0) = 1
cos(3pi) = -1
(-1/4) * (2 * (-1) * sqrt(1 + 4 * 1) + ln|2 * (-1) + sqrt(1 + 4 * 1)|) + (1/4) * (2 * 1 * sqrt(1 + 4 * 1) + ln|2 * 1 + sqrt(1 + 4 * 1)|) =>
(1/4) * (2 * sqrt(5) + ln|2 + sqrt(5)|) - (1/4) * (-2 * sqrt(5) + ln|-2 + sqrt(5)|) =>
(1/4) * (2 * sqrt(5) + ln|2 + sqrt(5)|) + (1/4) * 2 * sqrt(5) - (1/4) * ln|sqrt(5) - 2|) =>
(1/4) * (2 * sqrt(5) + 2 * sqrt(5)) + (1/4) * ln|(sqrt(5) + 2) / (sqrt(5) - 2)| =>
(1/4) * 4 * sqrt(5) + (1/4) * ln|(sqrt(5) + 2)^2 / (5 - 4)| =>
sqrt(5) + ln|(5 + 4 * sqrt(5) + 4) / 1| =>
sqrt(5) + ln|9 + 4 * sqrt(5)| =>
sqrt(5) + ln(9 + 4 * sqrt(5))
- rotchmLv 72 months ago
Hint: What formula or concept did you see for "the distance", or the "length of the curve" ?
State it here and we will show you how to apply it.
(Dont go by Captain's answer; he made many mistakes)
Ok, yes one of the formulas is to integrate sqrt((dx/dt)^2+(dy/dt)^2) dt.
So, evaluate dx/dt and dy/dt. What do you get for these?
Then, plug into sqrt((dx/dt)^2+(dy/dt)^2). What does it give?
And if you simplify it in various fashions, what expressions you get?
The next difficulty will be in integrating it. But do the above first.